- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Johnston, Lisa (1)
-
Kenepp, David (1)
-
Nguyen, Evuilynn (1)
-
Paul, Digjoy (1)
-
Schilling, Anne (1)
-
Simone, Mary_Claire (1)
-
Zhou, Regina (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We introduce the immersion poset$$({\mathcal {P}}(n), \leqslant _I)$$ on partitions, defined by$$\lambda \leqslant _I \mu $$ if and only if$$s_\mu (x_1, \ldots , x_N) - s_\lambda (x_1, \ldots , x_N)$$ is monomial-positive. Relations in the immersion poset determine when irreducible polynomial representations of$$GL_N({\mathbb {C}})$$ form an immersion pair, as defined by Prasad and Raghunathan [7]. We develop injections$$\textsf{SSYT}(\lambda , \nu ) \hookrightarrow \textsf{SSYT}(\mu , \nu )$$ on semistandard Young tableaux given constraints on the shape of$$\lambda $$ , and present results on immersion relations among hook and two column partitions. The standard immersion poset$$({\mathcal {P}}(n), \leqslant _{std})$$ is a refinement of the immersion poset, defined by$$\lambda \leqslant _{std} \mu $$ if and only if$$\lambda \leqslant _D \mu $$ in dominance order and$$f^\lambda \leqslant f^\mu $$ , where$$f^\nu $$ is the number of standard Young tableaux of shape$$\nu $$ . We classify maximal elements of certain shapes in the standard immersion poset using the hook length formula. Finally, we prove Schur-positivity of power sum symmetric functions on conjectured lower intervals in the immersion poset, addressing questions posed by Sundaram [12].more » « less
An official website of the United States government
